Пошук
загрузка...
Книги
Счетчик

ІНДЕКСИ

МЕТОДИЧНІ ВКАЗІВКИ

Індекс — це відносна величина, яка характеризує зміну явища в часі, просторі чи порівняно з певним стандартом (нормативом). Залежно від характеру порівнянь індекси поділяють на динамічні, територіальні та досягнення певного стандарту.

За ступенем охоплення елементів сукупності, тобто за агрегова­ністю інформації, індекси поділяються на індивідуальні та зведені. Індивідуальні індекси характеризують зміну в часі чи співвідношен­ня у просторі одного якогось індивідуального явища, скажімо, ціни товару одного виду. Зведені індекси являють собою співвідношення рівнів складного явища, до якого входять різнорідні елементи, нап­риклад окремі товари, що реалізуються в мережі роздрібної торгівлі.

Якщо вивчається відносна зміна якогось показника по сукуп­ності, поділеній на групи, то зведений індекс може бути груповим (субіндексом) або загальним. Так, індекс продукції харчової промисловості є загальним, індекси продукції окремих підгалузей (м’ясна, рибна, кондитерська тощо) — субіндексами, індекси ви­робництва окремих продуктів харчування (цукор, олія, борошно та ін.) — індивідуальними індексами.

Зведені індекси як узагальнені характеристики дають змогу не лише вивчати зміну якогось агрегованого показника в часі чи просторі, а й кількісно оцінювати вплив окремих факторів, тобто вони виконують як синтетичну, так і аналітичну функцію.

За формою індекси поділяються на агрегатні, середньозважені та індекси середніх величин. Вибір того чи іншого індексу зале­жить від мети дослідження, економічної суті показника, що вив­чається, та наявної інформації.

Будь-який індекс — це співвідношення двох однойменних по­казників. Той, з яким здійснюється порівняння, називають базою порівняння. Так, в індексах динаміки базою порівняння є показ­ник якогось попереднього періоду (моменту) часу, у територіа­льних індексах — показник певного регіону (об’єкта).

Застосовуючи індексний метод, дотримуються відповідних умовних позначень, загальноприйнятих у теорії та практиці ста­тистики. Основні з них: q — кількість проданого товару чи обсяг виробленої продукції певного виду в натуральному виразі; p — ціна одиниці товару чи продукції; z — собівартість одиниці продукції; t — затрати робочого часу на одиницю продукції (трудомісткість) і т. ін. Виходячи з цих позначень, можна запи­сати: pq — вартість товару певного виду (товарооборот) або вар­тість виготовленої продукції; zq — грошові витрати на вироб­ництво; tq — затрати робочого часу на виробництво і т. ін.

Показники базисного періоду мають у формулах підрядковий знак «0», а поточні — «1». Показник, зміна якого вивчається, називається індексованим. Підрядковий знак самого індексу вказує на індексовану величину.

Наприклад індивідуальні індекси:

— індекс фізичного обсягу товару (виготовленої про­дукції);

— індекс ціни;

— індекс вартості (товарообороту) конкретного виду продукції.

Індивідуальні індекси, що характеризують зміну явищ, поєдна­них між собою як співмножники, мають такий взаємозв’язок: добу­ток індексів співмножників дорівнює індексу добутку. Наприклад, індекс товарообороту дорівнює добутку індексу ціни та індексу фізичного обсягу (ipq = ipiq). Такі індекси мають назву сполучених, спряжених, співзалежних. Взаємопов’язані також індекси прямих і обернених показників. Так, якщо індекс трудомісткості становить it = 0,8, то індекс кількості виробленої продукції в одиницю часу (продуктивності праці) i1/t = 1 : 0,8 = 1,25.

Соціально-економічні явища й ті показники, що їх характе­ризують, можуть бути порівнянними, якщо вони мають якусь спільну міру, і не порівнянними. Так, не можна безпосередньо додавати фізичний обсяг товарів, які мають різнi одиниці виміру (кг, м, мг тощо) та різну споживчу вартість. При агрегуванні таких елементів їх фізичні обсяги q зводяться до порівнянного (зiстав­ного) вигляду за допомогою таких сумірників, як ціна, собівартість чи трудомісткість одиниці продукції. Перемноживши, наприклад, ціни на відповідну кількість проданих товарів і додавши добутки, дістанемо загальний товарооборот. Відносну його зміну в динаміці характеризує зведений індекс товарообороту у фактичних цінах:

Формули індексів загальних витрат (грошових та трудових) на виробництво продукції мають такий вигляд:

Кожний із поданих зведених індексів характеризує зміну показ­ника, що являє собою результат добутку двох факторів-співмнож­ників. Очевидно, що зміна такого показника зумовлюється зміною кожного з цих факторів зокрема.

Так, зміна товарообороту у фактичних цінах може бути вик­ликана як зниженням чи підвищенням цін на окремі товари, так і зміною кількості (фізичного) обсягу реалізованих товарів. Щоб виявити окремий вплив якогось одного з цих факторів-співмнож­ників на зміну товарообороту в поточному періоді порівняно з базисним, слід інший умовно вважати незмінним, тобто зафіксу­вати на рівні одного періоду. Кожний з незмінних співмножників при побудові індексів відіграє властиву йому роль. Якщо нез­мінним є екстенсивний показник, то він відіграє роль статис­тичної ваги, а якщо інтенсивний — то він використовується як сумірник. Таке розмежування показників необхідне лише при побудові зведених індексів і саме тоді, коли індекс має харак­теризувати зміну якогось агрегату за рахунок окремого фактора.

Так, в індексі цін індексується, тобто змінюється саме ціна кож­ного з проданих товарів (інтенсивний показник), а кількість реа­лізованих товарів (екстенсивний показник) фіксується на рівні одного й того самого періоду; а в індексі фізичного обсягу індек­сується кількість проданих товарів і фіксується ціна. Кожен із факторів-співмножників можна фіксувати на рівні як базисного, так і поточного періоду.

У світовій практиці статистики існують дві рівноправні сис­теми індексів: базисно-зважена (Ласпереса) та поточно зважена (Пааше). Формули індексів цін і фізичного обсягу двох зазна­чених систем мають такий вигляд:

Ласпереса:      ;

Пааше:       .

Далі при побудові зведених індексів застосуємо таку систему зважування: інтенсивні показники (сумірники) фіксуємо на рівні базисного періоду, а екстенсивні (ваги) — на рівні поточного періоду. За цих умов відносну зміну товарообороту у фактичних цінах за рахунок зміни цін та за рахунок зміни фізичного обсягу характеризуватимуть відповідно такі індекси:

.

Індекси факторів-співмножників та індекс агрегованого резуль­тативного показника мультиплікативно пов’язані між собою:
Ipq =Ip · Iq. Знаючи будь-які два індекси цієї системи, можна визначити третій. Якщо, наприклад, ціни на продовольчі товари в поточному періоді порівняно з базисним зросли в середньому на 25 %, а товарооборот в фактичних цінах збільшився за цей період на 12 %, то фізичний обсяг товарообороту за цих умов зменшився на 10,4 %: Iq = Ipq : Ip = 1,12 : 1,25 = 0,896, або 89,6 %. Цей зв’язок забезпечується тоді, коли один з індексів-співмножників обчислюється за поточною вагою, а другий — за базисним сумір­ником або навпаки.

Індексна система співзалежних (спряжених) індексів дає змогу оцінити не лише відносний, а й абсолютний вплив факторів-спів­множників на результативний показник. Абсолютний приріст на підставі індексів визначається як різниця між чисельником і зна­менником відповідного індексу.

Абсолютний приріст товарообороту у фактичних цінах: , у тому числі за рахунок зміни

цін: ;

фізичного обсягу: .

Очевидно, що .

Подані формули зведених індексів називають агрегатними. Але в окремих випадках виникає потреба у використанні серед­ньозважених індексів, тотожних агрегатній їх формі. Якщо, скажімо, за низкою реалізованих товарів відомі індивідуальні ін­декси ціни іp та товарооборот поточного періоду, то зведений індекс цін за таких умов визначають за формулою середньозва­женого гармонійного індексу:

.

Цей індекс тотожний зведеному агрегатному індексу, що випливає з таких перетворень:

.

Зведений індекс фізичного обсягу на підставі індивідуальних індексів ip та товарообороту базисного періоду визначається за формулою середньозваженого арифметичного індексу:

.

Шляхом аналогічних перетворень легко довести тотожність цього індексу агрегатній його формі:

.

Для вивчення зміни явищ більш ніж за два періоди застосо­вують ряди індексів за ланцюговою і базисною системами. Вибір системи залежить від мети досліджень. Якщо позначити послідов­ність якихось періодів символами «0», «1», «2», «3» і т. д., то можна побудувати такі індексні ряди:

а) базисні індекси цін зі змінною вагою:

;      ;      ;

б) ланцюгові індекси фізичного обсягу зі сталим сумірником:

;      ;

Добуток ланцюгових індексів зі сталим сумірником дорівнює кінцевому базисному.

У статистико-економічному аналізі нерідко доводиться порів­нювати такі узагальнюючі характеристики, як середня ціна, серед­ня собівартість, середня кредитна ставка тощо. У даному разі йде­ться про середні, що обчислені як середньозважені. Рівень такої середньої залежить як від індивідуальних значень осереднюваної ознаки, так і від співвідношення частот (ваг). Тому і зміна такої середньої в динаміці зумовлена впливом тих самих факторів, від яких залежить сама середня. Аналіз динаміки середнього рівня будь-якого інтенсивного показника здійснюють за допомогою таких взаємозв’язаних індексів: змінного складу , фіксованого складу Ix та структурних зрушень Id.

Індекс змінного складу характеризує відносну зміну середнього рівня в цілому за рахунок обох факторів:

.

Індекс фіксованого складу характеризує зміну середнього рівня за рахунок лише значень ознаки, тобто варіант, за незмінної структури сукупності:

.

Індекс структурних зрушень характеризує зміну середнього рів­ня за рахунок змін, що відбулись у структурі сукупності:

.

Між індексами середніх величин існує такий взаємозв’язок:

[1, с. 121—138; 2, с. 152—172; 4, с. 208—218; 6, с. 225—266]

Динамічний індекс — характеризує зміну явища в часі.

Територіальний індекс — оцінює результат порівняння явища у просторі (за різними об’єктами, регіонами).

Індексована величина — показник, відносна зміна якого вивчається в часі чи просторі.

Інтенсивний показник — один з факторів співмножників, що від­биває певною мірою його якісну суть.

Екстенсивний показник — один із факторів співмножників, що від­биває суто обсягову його характеристику.

Сумірник — показник, який дає змогу звести до порівнянного виг­ляду сукупність різнорідних елементів.

1. У чому полягає суть індексу?

2. Назвіть критерії, за якими класифікуються індекси.

3. Чим відрізняється зведений індекс від індивідуального?

4. Поясніть сутність індексних систем Ласпереса та Пааше.

5. Які з показників, як правило, відіграють роль сумірників?

6. Поясніть аналітичну функцію систем спряжених індексів.

7. Як визначити абсолютний приріст результативного показника за рахунок окремих факторів-співмножників?

8. За яких умов застосовуються середньозважені індекси?

9. Чим відрізняються індекси змінного та фіксованого складу?

  1. 10. Поясніть економічну сутність індексу структурних зрушень.

План практичних занять

Заняття 1.

  1. З’ясувати методологічні аспекти побудови зведених індексів.
  2. Визначити індивідуальні та зведені індекси агрегатної фор­ми, зробити висновки.
  3. Розкласти загальний абсолютний приріст за рахунок окре­мих факторів.
  4. Побудувати системи співзалежних (спряжених) індексів, пояс­нити їх економічний зміст.

Заняття 2.

  1. З’ясувати сутність та умови застосування середньозважених індексів та індексів середніх величин.
  2. Обчислити середньозважені арифметичний та гармонійний індекси.
  3. Визначити індекси змінного та фіксованого складу, а також індекс структурних зрушень. Зробити висновки.

Навчальні завдання

  1. Наведені в табл. 1 дані характеризують динаміку цін та кі­лькості проданого чоловічого одягу однією з фірм.
Таблиця 1
Вид одягу Ціна за одиницю товару,
грн., у періоді
Кількість проданого одягу,
шт., у періоді
базисному поточному базисному поточному
Плащі 540 565 42 50
Костюми 420 405 160 185

Визначіть: а) зведені індекси цін, фізичного обсягу реалізації та товарообороту у фактичних цінах; б) абсолютний приріст това­рообороту в цілому та за рахунок окремих факторів.

Зробіть висновки.

Відповідь. 0,985; 1,165; 1,148.

  1. По одному з регіонів маємо дані, наведені в табл. 2.
Таблиця 2
Вид продукції Вирощено продукції,
тис. т, у періоді
Собівартість 1 ц продукції,
грн., у періоді
базисному поточному базисному поточному
Картопля 1180 1290 30,4 35,0
Овочі 24,6 25,5 28,0 30,1

Визначіть:

а) зведені індекси собівартості 1 ц продукції, фізичного обсягу та загальних грошових витрат на виробництво;

б) абсолютний приріст загальних грошових витрат на вироб­ництво сільськогосподарської продукції в цілому та за рахунок окремих факторів.

Зробіть висновки.

Відповідь. 1,15; 1,092; 1,256.

  1. Динаміка роздрібного товарообороту та цін по регіону ха­рактеризується даними, наведеними в табл. 3.
Таблиця 3
Група товару Обсяг роздрібного товарообороту
у фактичних цінах, млрд грн.
Підвищення цін
в 2001 р. порівняно з 2000 р., %
2000 р. 2001 р.
Продовольчі 12,1 11,3 32,0
Непродовольчі 6,9 8,0 27,6

Визначіть зведені індекси: а) цін; б) фізичного обсягу роздріб­ного товарообороту, скориставшись взаємозв’язком спряжених ін­дексів.

Відповідь. 1,301; 1,016.

  1. Реалізація зернових культур та цукрових буряків аграрними підприємствами характеризується даними, наведеними в табл. 4.
Таблиця 4
Вид продукції Загальний обсяг продажу, млн грн. Індивідуальний індекс фізичного обсягу реалізації
2000 р. 2001 р.
Зернові 316,4 284,2 0,820
Цукрові буряки 115,0 112,3 0,845

Визначіть заведені індекси: а) фізичного обсягу проданої про­дукції; б) цін, скориставшись взаємозв’язком спряжених індексів. Зробіть висновки.

Відповідь. 0,827; 1,111.

  1. Маємо дані по біржі нерухомості, що характеризують ціни та кількість проданих однокімнатних квартир (табл. 5).
Таблиця 5
Місце розташування Ціна за одну квартиру,
грн., у періоді
Кількість проданих квартир,
шт., у періоді
базисному поточному базисному поточному
Центр 18,5 16,0 44 48
Околиця 12,3 11,0 16 12

Визначіть: а) середні ціни на однокімнатні квартири в базисному і поточному періодах та індекс середньої ціни (змін­ного складу); б) індекси середньої ціни фіксованого складу та структурних зрушень. Поясніть економічний зміст здобутих індексів.

Відповідь. 0,90; 0,88; 1,022.

  1. Динаміка врожайності та посівних площ зернових культур по регіону характеризується даними, наведеними в табл. 6.
Таблиця 6
Сільськогосподарська культура Врожайність, ц/га, у періоді Площа, з якої зібрано урожай, тис. га, у періоді
базисному поточному базисному поточному
Пшениця 28,3 33,5 180,2 256,3
Кукурудза на зерно 32,6 30,0 41,6 25,5
Ячмінь 20,0 21,2 170,0 120,1

Визначіть індекси середньої врожайності змінного та фіксо­ваного складу, а також індекс структурних зрушень. Зробіть вис­новки.

Відповідь. 1,175; 1,134; 1,036.

Задача 1. По одному з регіонів маємо такі дані щодо ринку нежитлової нерухомості (табл. 1).

Таблиця 1
Призначення об’єкта Середня ціна за один об’єкт, тис. грн. Кількість проданих об’єктів за рік, шт. Загальна вартість про­даних об’єктів, тис. грн.
2000 р. рo 2001 р. p1 2000 р. qo 2001 р. q1 Po qo p1q1 po q1
Магазин 155 140 30 22 4650 3080 3410
Офіс 85 80 15 24 1275 1920 2040
Разом х х 45 46 5925 5000 5450

Розгляньте відомі вам індекси та дослідіть їх взаємозв’язки.

Розв’язання

Обчислимо індекс товарообороту (вартості проданих об’єктів):

, або 84,4 %.

Отже, вартість проданих об’єктів у цілому зменшилася в 2001 р. порівняно з 2000 р. на 15,6 %. Як показує індекс цін:

загальна вартість проданих об’єктів за рахунок цін зменшилася на 8,3 %. Індекс фізичного обсягу:

дає змогу зробити висновок про те, що загальна вартість проданих об’єктів зменшилась на 8 % за рахунок кількості проданих об’єк­тів двох типів у цілому. Перевіримо зв’язок між обчисленими індексами: Ipq = 0,917 · 0,92 = 0,844.

Абсолютний приріст (зменшення) вартості проданих об’єктів в цілому становить:

Δpq = 5000 – 5925= – 925 (тис. грн.),

у тому числі за рахунок зниження цін Δр = 5000 – 5450 =
= – 450 (тис. грн.),

за рахунок зменшення кількості реалізованих об’єктів Δq =
= 5450 – 5925 = – 475 (тис. грн.).

Задача 2. Обчисліть середньозважені індекси собівартості та кількості виготовленої продукції за даними по одному з булочно-кондитерських комбінатів (табл. 2).

Таблиця 2
Вироби Загальні витрати
на виробництво,
млн грн., у періоді
Темпи приросту, % Індивідуальні індекси
базисному поточному собівартості фізичного обсягу iz iq
Хлібобулочні 10,8 11,7 25 18 1,25 1,18
Кондитерські 7,2 9,3 30 22 1,30 1,2
Разом 18,0 21,0 х х х х

Розв’язання

Обчислимо середньозважений індекс собівартості одиниці про­дукції:

.

Таким чином, собівартість на виробництво одиниці продукції двох видів зросла в поточному періоді порівняно з базисним у середньому на 27,3 %.

Середньозважений (арифметичний) індекс фізичного обсягу виготовленої продукції становить:

,

тобто кількість хлібобулочних та кондитерських виробів на комбінаті збільшилась у середньому на 19,6 %.

Задача 3. Наведені в табл. 3 дані характеризують рівень місячної заробітної плати та чисельності працівників авіаційного та морського транспорту.

Таблиця 3
Вид транспорту Середньомісячна зарплата, грн.,
у періоді
Чисельність працівників, тис.,
у періоді
Частка працівників окремих галузей, %, у періоді
базисному поточному базисному поточному базисному поточному
Авіаційний 276 330 31 27 36 30
Морський 232 295 55 63 64 70
Разом х х 86 90 100 100

Запишіть відомі вам індекси та дослідіть їх взаємозв’язок.

Розв’язання

Визначимо середньомісячну заробітну плату працівників у ціло­му по двох видах транспорту в базисному і поточному періодах:

;

.

Індекс змінного складу:

.

Середня заробітна плата працівників двох галузей підвищилась у поточному періоді порівняно з базисним на 23,2 %.

Індекс фіксованого складу:

,

тобто за рахунок зміни рівня заробітної плати працівників окремих галузей середня заробітна плата підвищилась на 24,5 %.

Індекс структурних зрушень:

або

.

Отже, середня заробітна плата працівників двох галузей зни­зилася на 1,1 % за рахунок структурних зрушень, оскільки в 1999 р. зросла частка працівників морського транспорту, де заробітна плата була нижчою, ніж в авіаційному.

Перевіримо взаємозв’язок між обчисленими індексами:

1,232=1,245 · 0,989.

Література

1. Статистика: Підручник / А. В. Головач, А. М. Єріна, О. В. Козирев та ін.; За ред. А. В. Головача, А. М. Єріної, О. В. Козирева. — К.: Вища шк., 1993.

2. Статистика: Підручник / С. С. Герасименко та ін. — К.: КНЕУ, 1998.

3. Теория статистики: Учебник / Под ред. Проф. Р. А. Шмойловой. — 3-е изд., перераб. — М.: Финансы и статистика, 1999.

4. Єріна А. М., Пальян З. О. Теорія статистики: Практикум. — К.: Знання, 1997.

5. Ефимова М. Р., Петрова Е. В., Румянцев В. Н. Общая теория статистики: Учебник. — М.: ИНФРА-М, 1996.

6. Ефимова М. Р., Ганченко О. И., Петрова Е. В. Практикум по общей теории статистики. — М.: Финансы и статистика, 1999.

загрузка...